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J. Phys.: Condens. Matter 4 (1992) 7499-7514. Printed in the UK 

Phase-transition-related crystal properties: the Neumann 
principle revisited 

Alfred K Agyeit 
Department of Physics, Univenity of Science and Whnology, Kumasi, Ghana, West 
Africa 

Reeeived 24 September 1991, in final form 17 Febwry  1992 

AbstracL The primary properlies acquirable by a cryslal upon undergoing a displacive 
s t ~ c t u r a l  phase transition (DSFT)  and/or magnetic and/or electric transition are defined 
with the aid of a Gibbs free-energy expansion, and a microscopic grouptheoretical anal- 
F i s  of them is carried out. The properties are, apart from t h a e  which define the 
transitions, piezomagnetism, piezoelectricity, magneloelectricily and piezomagnetoelec- 
tricily. It is shown that the macroscopic tensors characterizing them are sums of atomic 
property tensors, and, as- a m u l t ,  a clystal may exhibit spontaneous piezomagnetkm 
and/or piezoelectricity below its osm point TD andlor spontaneous magnetoelectricity 
below its femeleclric transition point TE. A crystal with a magnetic transition tempera- 
ture TM < TD or TE (or one with TE < TD) may therefore be in a weak or secondary 
magnetic (or electric) stale in the temperature region TM < T < TO or TE (or 
TE < T < TO). Thus iI is found, in particular, that a crystal with TM < TD or 
TE may exhibit macroscopic properties characterized by axial c-tensors at temperatures 
T < TD or TE, and not just at T < TM,  Among lhe crystals cited as being capable 
of going into the secondary magnetic and/or slectric State are the lransfoming A-1.5 
crystals. It is shown that they may exhibit not only the linear magnetoelectric effect. 
but also spontaneous piemmagnetism and piezoelectricity. and that their transition inlo 
the superconducting stale and their high critical tields H, may be connecwd with these 
properties. The analysis brings 10 the fore the limited scope of the Neumann principle. 

1. Introduction 

Crystals, as is well known, undergo four basic phase transitions that leave them 
in the crystalline state, namely structural (displacive and order-disorder), magnetic 
((anti)ferromagnetic), electric ((antijferroelectric) and superconducting transitions. 
The result of one or more of the first three transitions in a crystal is the acquisition 
by the crystal of certain static tensor properties governed by the symmeuy of the 
crystal’s low-temperature phase (the daughter crystal). 

These properties are usually described on the basis of the Neumann principle, 
which assumes the crystal point-group symmey to be the governing symmetry. It 
states: The static macroscopic properties of a cy ta l  must be invariant under the crystal 
point-group operations. 

Thus the principle can be used to describe the macroscopic, but not, strictly 
speaking, the microscopic, aspects of the properties in question. In particular, it 
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cannot generally be used to determine the magnetic or electric structures of a crystal, 
and cannot say anything about phenomena whose effects average out to zero over the 
crystal unit cell, such as, for example, the phenomena of cell-preserving antiferromag 
netism and antiferroelectricity, in which the magnetic and electric unit cells coincide 
with the crystallographic unit cells. 

The limitations of the principle and of descriptions based on it have long been 
recognized (see e.g. Opechowski and Guccione 1965), and about a decade and a half 
ago Agyei and Birman (1977) constructed a microscopic group-theoretical theory of 
phase transitions in crystals, which allows easy determination of the magnetic and 
electric structures of crystals and describes the phenomena of cell-preserving antifer- 
romagnetism and antiferroelectricity. In the present paper we define (section 2), and 
carry out on the basis of that theory, a microscopic analysis of a set of primary static 
tensor properties acquirable by a crystal upon undergoing magnetic and/or electric 
and/or displacive structural phase transitions. We shall show (sections 3 and 4) that 
the macroscopic or global tensors characterizing these properties possess a micro- 
scopic structure whose consideration reveals the possible existence of the phenomena 
of spontaneous piezoelectricity, piezomagnetism and magnetoelectricity, which give 
rise to weak (designated below as secondary) electric and magnetic states or crystals. 

The secondary magnetic state is of particular interest because a crystal in such a 
state can, subject to the Neumann principle, also exhibit static properties characterized 
by axial c-tensors, i.e. axial tensom that change sign under time reversal. Thus, while 
the Neumann principle can he used to determine whether or not a known magnetic 
crystal can exhibit a static property characterized by an axial c-tensor, a crystal that is 
at present considered to be non-magnetic may require a microscopic analysis before a 
definitive conclusion as to whether or not it can exhibit such an effect can be drawn. 

Such an analysis will require the use of the now generally recognized fact that 
magnetic and electric crystals are localized-moment (magnetic and electric-dipole) 
materials. We demonstrate in the present paper that a crystal below its displacive 
structural phase transition (DSPT) point can also be considered to be a localized- 
moment material, the moment here being an atomic displacement vector or a strain 
tensor. Thus all three [ypes of phase transition give rise to localized-moment daughter 
crystals. The conclusion that a macroscopic property tensor must have a microscopic 
structure follows from this fact. 

We also infer from this fact that these localized moments are the primary order 
parameters of the transitions, the bulk or sublattice magnetizations (polarizations) 
that are normally taken to be the order parameters of ferromagnetic or cell-doubling 
antiferromagnetic (ferroelectric or cell-doubling antiferroelectric) transitions being 
derived from these localized moments. 

The atomic displacement or localized strain is now generally acknowledged to be 
the order parameter of a DSPT, but an inconsistency, due perhaps to adherence to the 
Neumann principle, can be perceived in the literature: whereas the microscopic (i.e. 
localized) entity is acknowledged to be the order parameter, the latter is nonetheless 
deemed to possess the point-group symmetry of the crystal (see e.g. Scott 1974). We 
shall show that a localized moment must possess the local or site symmetry, and 
that it is the set of localized moments in the crystal unit cell that must possess the 
crystal point-group symmetry. This principle applies equally to magnetic, electric and 
displacement or strain-tensor moments, and it reveals the similarity, from the group- 
theoretical standpoint, of magnetic, electric and displacive structural (MEDS) phase 
transitions. We shall demonstrate (section 5) that this similarity is manifested by the 
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DSPT and magnetic transition observed respectively in the cubic perovskites LaAIO, 
and Mn,GaN. 

These results are summarized in section 6. 
The following are explanations of a few terms and symbols used in the paper. 

We shall designate as protoypic a nonmagnetic, non-electric single crystal with no 
history of a DSPT, so that it is entirely free from internal Stresses and strains. By 
the term sublattice we shall mean a crystal substructure possessing the full crystal 
symmetry, and formed by identical atoms (or ions) occupying equivalent sites in 
the crystal. The sublattices that actually undergo the magnetic or electric ordering 
or the distortion in a phase transition will be referred to as t-sublattices. Lastly, 
the spontaneous magnetizations, polarizations and strains that arise respectively in 
magnetic, electric and displacive structural transitions will be denoted by ?do), P(O) 

and do) = s. di), where x("') ( x ( ~ ) )  and s are the magnetic (electric) susceptibility 
and elastic compliance tensors and H ( ; ) ,  E(') and U(' )  = (~(li), . . . , u C ) )  are the 
corresponding magnetic, electric and stress-tensor field intensities. 

Finally, below we assume that (i) the parent crystal is a single crystal, (ii) the 
daughter crystal is single-domain and (iii) one and the same t-sublattice undergoes 
all the transitions (magnetic and/or electric and/or displacive structural) obselved in 
the crystal. 

a n d d o ) = ( @ ) ,  ..., c6 (0)) in matrk notation: ~ ( 0 )  = X(m). ~ ( i ) ,  p(0) = X ( e ) .  E(') 

2. Primary static tensor properties associated with MEDS transitions 

Consider a single-domain crystal with spontaneous magnetization A d o ) ,  polarization 
P(') and strain do). Let the crystal be located in external magnetic H ( e )  and electric 
E(e)  fields and let it be subjected to a symmetrized stress-tensor field de). The Gibbs 
free energy '3 of the crystal will then be a function of the temperature T and the 
resultant fields H = Let these 
fields be sufficiently weak, so that Q possesses a Taylor expansion in them. Then, 
if a0 is the free energy in the absence of these fields, we can, using the Einstein 
summation convention, Greek letters for indices running from 1 to 6 and roman 
letters for those ranging from 1 to 3, write (see also Schmid 1975): 

+ IT('), E = Ide) + E(') and U = de) + 

~ ( H , E , ~ , T )  - a o ( ~ )  = - f x : T ) ~ i ~ j  - $ x $ ) ~ i ~ j  

1 - -  z ~ p v a F ~ u - ~ ; j H ; E j  - X i v H , ~ , - - ; v E ; ~ , - ? r ; j . H i E j ~ ,  

+ a @ ) ( H , E , m , T ) .  (1) 

Here, the first, second and third terms on the right-hand side describe, respectively, 
the first-order magnetization, polarization and deformation effects in the crystal, and 
the fourth, fifth, sixth and seventh terms describe the magnetoelectric, piezomagnetic, 
piezoelectric and piezomagnetoelectric effects, respectively, a, A, 7 and ' 1 ~  being the 
magnetoelectric-susceptibility, piezomagnetic, piezoelectric and peizomagnetoelectric 
tensors. 

For the three fields H ,  E and a, these seven effects are the primaly effects for 
crystals, in the sense that all the other possible effects, described by the terms in the 
expansion of the last term in (l), are higher orders (in weakness) of them. Indeed, 
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the expansion (1) with @(r) ignored can be considered to be exact for zero external 
fields, when H = H(') ,  E = E(') and U = U ( ; )  (which is the case we shall mostly be 
concerned with below). 'lb see this, we only have to note that, by making the requisite 
number of tensor contractions with the vecton H(')  and E(') and the tensor U( ' )  

in any term of the @(') expansion, we can reduce that term to one identical in 
form with one of the seven terms. (Actually, the piemmagnetoelectric term can be 
similarly reduced to one identical in form with the magnetoelectric, piemmagnetic or 
piemelectric term; we only include it here to make the number of primary effects 
combinatorially complete.) Therefore, we can, by appropriately renormalizing the 
tensors x("'), x ( ~ ) ,  5, a, A, 7 and r, make the first seven terms on  the right-hand 
side of (1) take account of Thus there is no loss of generality when is 
ignored in discussions of spontaneous fields or  indeed of effects in external fields that 
are weak compared to the spontaneous fields. Consequently, below we shall ignore 

The effects described by the terms of the Gibbs freeenergy expansion induce in 
the crystal a magnetization (M), an electric polarization (P) and a strain-tensor (e) 
field. The fields produced by the primary effects are linear in H, E and U ,  and can 
be obtained by differentiating the truncated or  primary free energy @(P) = Q - 
with respect to H ,  E and U .  Below we shall consider these fields in the limits when 

-+ 0 for M, Ete) - 0 for P ,  and de)  - 0 for L. In this approximation we 
have 

m. 

and 

Let us now consider the fields H, E and U to be purely spontaneous fields, due (in 
the first approximation) to M(O), P(O) and do), respectively. Then M, P and L must 
transform with the crystal under its symmetry operations. If they are considered to 
be macroscopic quantities, then they must be invariant under the crystal point-group 
operations It then follows from the relations (2)-(4) that the property tensors a, A, 
7 and x must, if the effects they chdracterkze. occur in the crystal in question, also be 
invariant under the point-group operations. This is the Neumann principle. 

According to this principle, a static effect can occur in a crystal only if there exists 
a corresponding non-null property tensor that is invariant under the operations of 
the crystal point group. In particular, if the crystal is non-magnetic, then its property 
tensors must be i-tensors (i.e. tensors that are invariant under time reversal), and all 
c-tensors must identically vanish in such a crystal. Further, analysis shows (see e.g. 
Birss 1964) that polar i-tensors of odd rank and axial i-tensors of even rank should 
vanish identically in centrosymmetric crystals. 

Thus the Neumann principle leads, in particular, to the following two 'selection' 
rules. 
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(i) Only magnetic crystals can exhibit static effects characterized by c-tensors. 
(E) Centrosymmetric crystals cannot exhibit static effeci3 characterized by even- 

rank axial and odd-rank polar i-tensors. 
These rules strictly apply only to the external-field-induced bulk effects. Cen- 

trosymmetric crystals clearly can exhibit spontaneous antiferroelectricity, and, as 
shown below, certain non-magnetic crystals may exhibit spontaneous magnetoeleo 
tricity (SME) and/or spontaneous piezomagnetism (SPM) and/or spontaneous piezo- 
electricity (SPE). A crystal exhibiting SME or SPM will be magnetic (albeit weakly so) 
and, hence, capable of exhibiting external-field-induced bulk effects characterized by 
axial etenson. Thus we shaIl find that the current definition of a magnetic crystal 
needs to be broadened to encompass such crystals. 

These results are obtained in section 4. In the next section we show that the 
daughter crystals arising in strain-induced DSPT (referred to below as SIDSPT daughter 
crystals) can be considered to be localized strain-moment materials and, on the basis 
of this, argue that property tensors are, like magnetic and electric-dipole moments, 
entities belonging to the t-sublatticc atoms, and that a global properly tensor is the 
sum of the corresponding property tensors of the t-sublattice atoms. The results 
obtained in section 4 follow from these conclusions. 

3. Localization of spontaneous strains and the microscopic structure of bulk property 
tensors 

3.1. SIDSPT daughter crystals as ~ocalized-strain-monient niaterials 

As Agyei and Birman (1977) have shown, the t-sublattice atom displacements that 
occur in a DSPT transform among themselves under the operations of the daughter t- 
sublattice transformation group, similarly to the magnetic and electric-dipole moments 
in magnetic and electric crystals. Consequently, we can, by analogy with the latter 
crystals, regard DSPT daughter crystals as localizeddisplacement-moment materials. 
Below we shall show that in strain-induccd DSPT (SIDSPT) the atomic displacements are 
induced by l o c a l i d  strains, so that the resulting daughter crystals can be considered 
to be localized-strain-moment materials. We do this on the basis of Born's molecular 
theory of elasticity and Agyei and Birman's (1977) theory of phase transitions in 

According to the Born theory (see Born and Huang 196S), any homogeneous 
crystal deformation, i.e. one that leaves the material in the crystalline state, can be 
built up by subjecting the crystal particles (molecules or atoms) to the following 
displacements: 

crystals. 

where r ( k )  is the initial position vector of the mth atom in the qtb unit cell; ~ ( g )  
and ~ ( m )  are respectively q-dependent and q-independcnt displacements of this 
atom; and E is a tensor composed of deformation parameters, i.e. a strain tensor. 

The same mechanism can be assumed to underlie DSPT-induced homogeneous 
deformation of crystals, with the difference that the displacement U( m) and the 
tensor E arise spontaneously, and that not all the a t o m  in the crystal need undergo 
such displacements. Indeed, experiment shows that, normally, the atoms of only one 



sublattice undergo displacements in a DSPT, and we shall assume this to be the case 
in the present paper. 

Thus let a protoqpic single crystal in zero external magnetic, electric and stress 
fields undergo a DSPT as a result of the spontaneous displacement of the atoms of one 
sublattice-the t-sublattice. In this case the continuum approach to the description 
of crystal deformation is inadmissible, and we must treat the set of vectors ~ ( g )  as 
a discrete set and the spontaneous tensor e = E(,) ,  when it arises, as one localized 
at the site of the atom on which it acts. Further, since the atoms in a unit cell can 
be displaced in different directions, will generally vary from atom to atom within 
the t-sublattice unit cell. We shall take this fact into account by assigning to do) the 
label of the atom on which it acts. Also, because of the translational symmetry, we 
need to consider only the displacements of the t-sublattice atoms in a parent crystal 
cell corresponding to the daughter crystal unit cell. We shall designate this cell as the 
q = 0 or reference parent crystal cell (RPCC). Taking these points into account, and 
setting the translation vectors U(%) = &I, ~ ( m )  = U, and T ( % )  = wOm. we can 
write (5) in the form 

U:) =U, + ‘ 2 ) . W o m  m = O , l , .  . . ,n - 1. (6)  

Here n is the number of t-sublattice atoms in the RPCC, and the m = 0 atom is the 
reference t-sublattice atom. 

The vectors U, and the strain tensors €2’ in (6) thus give the atomic displace- 
ments arising in the DSFT Let us show that they virtually determine the transition 
(i.e. fix the order parameter and the daughter crystal point group) and elucidate the 
relation between them. 

Let E, and Go be the space and point groups of, and H ,  the t-sublattice site 
point group in, the parent crystal, and let E, G and H be the corresponding groups 
for the daughter crystal. Finally, let 7 be the translation group of the daughter 
crystal. Since DSPT-induced deformations are always slight, 7 can be  considered to 
be a subgroup of the parent crystal’s translation group ‘To, the two being identical 
when the transition is cell-preserving. The transformation group of the RPCC will be 
the factor group Fa = E0/7, i.e. the space group E, modulo the translation group 
7. By locating the coordinate origin at a t-sublattice site, we can write Fa as a set of 
left cosets {R,[VOm}H& where m = O,l,. . . , n - 1; R, E G, - HA for m + 0, 
and R, = 1, the identity element; the V,, (Voo = (O,O,O)) are the t-sublattice 
atom position vectors relative to the new coordinate origin; HL coincides with, or is a 
subgroup of, H ,  according to whether the transition is or is not cell-presercing; and 
n, the number of t-sublattice sites in the RPCC, is equal to the index of HA in Go. 

The coset decomposition of Fo in the case of cell-preserving DSPT is trivial. Its 
feasibility in the case of cell-non-preserving transitions will be demonstrated elsewhere 
in an extension of the Agyei-Birman theory to cover such transitions. Here we shall 
only touch upon the gencral theory under the assumption that the coset decomposition 
can always be carried out. Further, we shall assume the DSPT in question to be a 
transition to a single-domain daughter crystal belonging to a given crystal class. 

For such a transition the coset decomposition will be unique in the case of a cell- 
preserving DSPT, when HA = Ha. For a cell-non-preserving DSPT more than one (E, 
say) transformation groups Foj =E,/?; comprising the cosets {R, ]Vom}H& ( j  = 
1, 2, . . . , I )  will in general be admissible. It is, however, easy to see that the various 
HAj will be isomorphic subgroups of H,, and will yield the same daughter crystal 
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point group G. The corresponding daughter crystal space groups Gj will generally 
not be the same since the translation groups T, will generally not coincide, but 
being interested only in G here, we can ignore this subtlety and take any one of the 
admissible Foj,  with the index j dropped, as the RPCC transformation group. 

In what follows then, by Fo we shall mean an admissible set of coses 
{R,,lV0,,,}HA in the case of cell-non-preserving DSPT and the set of coses 
{R,IVo,)H,, in the case of cell-preserving DSPT. This will constitute the tGIns- 
formation or symmetry group of the n t-sublattice atoms in the RPCC. Let us first 
suppose that the transition does not break up the t-sublattice into two or more daugh- 
ter crystal sublattices. Then the daughter t-sublattice unit-cell transformation group 
F = G/T will contain the same number of cosets of the form {R,)V,)H, where 
the V, are the new position vectors of the t-sublattice atoms: m = O , l ,  . . . , n - 1. 
In consequence, the global transition Bo -+ B will be governed by the site transition 
HA -t H, whose order parameter must therefore be the order parameter of the 
global transition, i.e. of the DSPT. 

Let us now suppose that the transition breaks up the parent t-sublattice into 
s > 1 daughter t-sublattices. It is easy to see that we can always split the coset de- 
composition {R,IV,,)H; into s setsofcosets { R % ) , ~ V ; ~ $ ) H ;  ( i  = I,. .. , s ; m i  = 
0,1,. . . , ni - 1; E;"=, ni = n) that will go over into s transformation groups, with 
cosets {&),lV2,))Hi, describing the s daughter t-sublattices. Thus in this case the 
global transition will be governed by the site transitions H ;  - Hi: 

Let H, c HA be the group of highest order in the set {Hi # HA11 6 i < s}. 
Then it can easily be shown that Hi C H,. Further, if, following Landau (1937). 
we assume that the transition is induced by a single irreducible representation r of 
Xb (see below), then the site transitions must have the same order parameter, which 
must clearly be that component of the basis vector of r which is invariant under the 
operations of the Hi(i = 1 , 2 , .  . . , s) of under the operations of H ,  since H, C Hi. 
This order parameter must be the order parameter of the DSPT. 

Thus in either case the order parameter of the If; - H ,  (= H in the s = 1 
case) site transition is the order parameter of the DSPT in question. Let us show 
that this order parameter k the diSpbdCetTIent uo or the tensor e!') in relation (6) for 
the reference t-sublattice atom. In doing this we shall, for simplicity of exposition, 
consider only the s = 1 case, the generalization to the s > 1 case being trivial. 

Evidently, the reduction in the t-sublattice site symmetry, i.e. the transition HA -+ 
H, is due to the t-sublattice atom displacements U%), which must be such that U?) 
is invariant under the operations of H and U:) = {Rm[V,,,}@). Consequently, we 
need to consider only the HA + If transition at the reference t-sublattice site. 

On the basis of the Landau theory of phase transitions, this transition will be 
induced by an irreducible polar-vector or polar-tensor representation, r,, of H;. Let 
us consider the case when the transition takes the crystal into a given crystal system 
with the minimum degree of distortion. 

The group H will, on the basis of the Goldrich-Birman chain subduction criterion 
(Goldrich and Birman 1968), then be that maximal subgroup of HA whose polar- 
vector or polar-tensor unit representation rl is subduced once by r,,, and the order 
parameter of the transition will be r,'s basis vector, which can  be found from the 
character tables of the 32 crystallographic point groups. For a DSPT it, and hence the 
order parameter of the transition, may be (i) a displacement ai  in the direction S i ,  
where &; = (i,; or .&) is the unit vector along one of the coordinate axes, (ii) an 
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irreducible set qi of strain-tensor components or, equivalently, the strain tensor E ;  

with q i  as its sole non-trivial irreducible set of components (i.e. with vi as the only 
irreducible set that is not invariant under the operations of HA), or (iii) either a i  or 
q i  ( e i ) ,  which may or may not be coupled according as the vector ui = ei * ii is or 
is not different from zero. Expressed in the soft-mode language, this assertion states 
that a DSPT may be driven: 

(i) solely by a soft optic phonon; 
(ii) solely by a soft acoustic phonon, i.e. may be purely strain-induced; 
(iii) by coupled soft acoustic and optic phonons; or 
(iv) by a soft acoustic (or optic) phonon in the presence of a soft optic (or 

acoustic) phonon to which it is not coupled, at least in first order. 

The order parameters a ;  and ci arise spontaneously at the reference t-sublattice 
site, and can therefore be identified with the quantities uo and e r ’  in relation (6) 
with m = 0. They are each invariant under the operations of the reference t- 
sublattice site point group, and determine the displacement u:) at the site, the 
displacement = U, + e$,? wOm at the nith site being given, as shown above, 
by U!,? = {R, lV, }ur)  ( m  # 0). Hence the sets {U,] and {&I} defined by (6) 
each possesses the daughter crysfal point-group symnierry (i.e. the elements of each set 
tramform among themselves under fhe ctysralpoint-group operations), while each element 
possesses the corresponding sire point-group synznretry. 

Thus the quantities U, and &? behave under the crystal symmetty operations 
in precisely the same way as magnetic or electric-dipole moments do in magnetic or 
electric crystals. It is therefore not inappropriate to describe DSPT daughter crystals 
as displacement-moment or, in the case of SIDSPT daughter CryStalS, on which we shall 
henceforth focus our attention, strain-moment materials. 

In SIDSPT daughter crystals, it is the strains E:) that maintain the t-sublattice 
atoms in their new positions and determine the deformation or bulk strain of the 
crystal. Thus the first term on the right-hand side of (4), referred to the daughter 
crystal unit cell, is the sum do) = E:=, e$, which may or may not be equal to zero. 
In other words, the crystal may be deformed even though its bulk strain is equal to 
zero, just as a crystal may be magnetic (electric) even though its bulk magnetization 
(polarization) is equal to zero. 

3.2. The property fensois as sunis of atomic property tensors 

Let us now consider the low-temperature phase of a prototypic single crystal that 
undergoes in zero external H, E and U fields a strain-induced DSPT and at or below 
the DSPT point a magnetic and/or electric transition, leading to the appearance of, 
besides the first term on the right-hand side of (4), one or more of the other terms. 
The effect of these terms is to distort the crystal further. Like the distortion due 
to the first term, the distortions induced by these tcrms must be due to t-sublattice 
atom displacements if the material is to remain truly crystalline. Hence these tcrms 
must also be the sums of localized strains: ( A .  H), = A, . H,, (7. E ) ,  = 
y, .E,,,, ( H  . x . E ) ,  = H ,  . rm . E , ,  where H, and E, are the spontaneous 
magnetic and electric field intensities at The mth t-sublattice site and A,, ym and 
x, can be described as the piezomagnetic, piezoelectric and piezomagnetoelectric 
tensors of the mth t-sublattice atom. As a result, e from (4), referred to the crystal 
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unit cell, can be. written as E = r,,,=, E,,,, where 

E,,, = E ? ) +  A,,,. H,,, +y,. E ,  + H ,  .zm. E,. (7) 

It follows from the foregoing that the macroscopic property tensors A, 7 and z are 
the sums of atomic property tensors, and we can conclude that the third and fourth 
terms on the right-hand sides of (2) and (3) must be sums of localized vectors. The 
magnetoelectric susceptibility tensor a has been shown by Asyei and Birman (1990) 
to be the sum of localized or atomic magnetoelectric susceptibility tensors a,,, in 
localized magnetic and/or electric-dipole moment materials. In such materials, then, 
we have from (2) and (3), referred to the crystal unit cell, that 

and 

where 

and 

Pm = Pg’+ U, . H ,  i-7,. U,,, + H, .z,. um. (9) 

Thus the global or macroscopic property tensors associated with MEDS transi- 
tions are sums of atomic property tensors. An atomic property tensor A, (= 
a,,,, A,, y, or z,) musf be invariant under fhe operalions offhe alom’s sire point 
group, and fhe sef {Am} of such tensors in the crysral unit cell must have fhe ctysfal 
point-group symmetv. 

If the macroscopic property tensor A = CA, is not a null tensor, then the 
macroscopic effect characterized by A may occur in the crystal. If, on the other 
hand, A is a null tensor, then the effect will be forbidden, but, as we shall show in 
the next section, the presence of the A,,, may allow the occurrence of other effects 
in the crystal. 

Finally, to conclude this section, we must note that DsPT driven solely by soft optic 
phonons are not covered by the expansion (1) since no spontaneous strains arise in 
such transitions. The crystal dcfonnation in this case is brought about by a rigid 
displacement of the t-sublattice relative to some non-equivalent sublattice. This is, 
for example, the only mode of deformation possible in a cell-preserving DSPT in which 
the t-sublattice unit cell contains only one atom, such as, for example, in the cubic- 
to-tetragonal DSPT that occurs in the peromkites BaTiO,, PbTiO, and KNbO,. For 
such transitions the Gibbs free energy should be expanded in terms of the optic mode 
amplitude, with the frequency serving as the primary property tensor. The expansion 
will, in the absence of external stress, contain no stress terms and the crystal ;hat it 
describes will not exhibit the spontaneous-stress-related properties discussed below. 
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4. Spontaneous piezoelectricity, piezomagnetism and magnetoelectricity (PPM) and 
their effects 

4.1. Spontaneous PPM; secondary electric and niagneric states 

It is well known from experiment that (i) most magnetic transitions are preceded 
by DSPT and (ii) a crystal that orders both electrically and magnetically usually goes 
into the electric phase first. Let us, on the basis of these facts, consider a prototypic 
clystal that undergoes in zero external H, E and U fields an SIDSPT at a temperature 
TD and/or an electric transition at TE and a magnetic transition at TM under the 
following assumptions: 

(i) TM < T E  < TD; 
(ii) one and the same sublattice is the t-sublattice for all the transitions that occur 

(iii) no DSPT occurs at TE or in the temperature range from TE to TM. 
Let us first consider the case when the crystal undergo.% a DSPT and then an 

electric transition. 
The transition into the electric state will be possible only if the site point group H 

of the t-sublattice below T, admits of the existence of electric-dipole moments at the 
t-sublattice sites. Further, if the point group H also admits of a non-null piezoelectric 
tensor 7 such that the piezoelectric moments p ,  = y, . U, (where the uk are the 
spontaneous stress tensors arising as a result of the DSPT) coincide in direction with 
the electriodipole moments Pp’ that appear at TE. then the moments pk can be 
non-zero. A crystal in which the moments p ,  are non-zero can be said to exhibit 
spontaneous piezoelectricity in the temperature range T 6 T,. 

Similarly, if the site point group of the daughter t-sublattice arising in the DSPT 
admits of a non-null piezomagnetic tensor X and the existence at the t-sublattice 
sites of magnetic moments coinciding in direction with the piezomagnetic moments 
mk = Xk.uk, then the latter can be non-zero and the crystal may exhibit spontaneous 
piezomagnetism below To. 

Finally, if magnetic moments M, can coexist with the electriodipole moments 
P r ’  at the t-sublattice sites in an electric crystal and the t-sublattice site point 
group admits of a non-null magnetoelectric tensor a such that the magnctoelectric 
moments mh = ak . E, (where E, is the electric field due to P f ’ )  coincide in 
direction with the admissible magnetic moments M,,  then the m, can be non-zero 
and the crystal can be said to be capable of exhibiting spontaneous magnetoelectricity 
in the temperature range below TE. 

Thus a crystal can undergo spontaneous piezoelectric and/or piezomagnetic or- 
dering at its DSPT point and/or spontaneous magnetoelectric ordering at its electric 
transition point. The ordering will be (anti)ferroelectric ((anti)ferromagnetic) ae- 
cording as P = E;=, p I  ( M  = E;=, mk) is or is not equal to zero. We can 
therefore speak of spontaneous (anti)ferropiezoelectricity, (anti)ferropiezomagnetism 
and (anti)ferromagnetoelectricity. 

As electric and magnetic ordering effects, these phenomena are clearly second- 
order effects, and a crystal exhibiting spontaneous piezoelectricity can be described as 
being in the secondary electric state in the temperature region TE < T < T,, while a 
crystal exhibiting spontaneous piezomagnetism or magnetoelectricity can be described 
as being in the secondary magnefic dale at temperdtures T, < T < T, or TE. They 
are, however, of considerable interest, as we shall now proceed to demonstrate. 

in the crystal; 
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A crystal in the secondary magnetic state in the region TM < T < TD or TE 
will have as its symmetry group the same type-I or type-I11 Shubnikov space group 
that will be assigned to it in the tempcrature region below TM. It will, in particular, 
not have time reversal as a symmetry operation and therefore can, subject to the 
Neumann principle, exhibit any macroscopic property characterized by an axial c- 
tensor. This generalizes and at the same time further elucidates the result, obtained 
by Agyei and Birman (1990), that certain non-magnetic electric crystals can exhibit 
the (external-field-induced) linear magnetoelectric (ME) effect, designated by them 
as the semi-spontaneous ME effect. Indccd all the crystals listed in table 2 in their 
paper may exhibit spontaneous magnetoelectricity and, as asserted there, the semi- 
spontaneous ME effect at T < TE. All of them, except Ti,O,, may also exhibit the 
external-field-induced piezomagnetic effect below TE. The odd crystal Ti,O, will be 
discussed below. 

4.2. Secondary magnelic and electric crystals 

In the foregoing discussion we have made no assumption about the value of TM and 
there is no reason why it cannot be equal to absolute zero. In other words, the actual 
magnetic transition need not occur at all. The possibility of its occurrence, i.e. the 
admissibility of the existence of magnetic moments at the t-sublattice sites, is all that 
is required for the crystal to go into the secondary magnetic state at TD or TE. Such 
crystals, i.e. those that remain in the secondary state right down to absolute zero, can 
be designated as secondary magnetic materials. 

Similarly, a crystal that orders piezoelectrically at the DSPT point can remain in 
the secondary electric state right down to absolute zero, and such a crystal can be 
called a secondary electric material. 

Secondary magnetic (electric) crystals are legitimate magnetic (electric) crystals 
and the class of magnetic (electric) materials should, perhaps, be broadened to include 
them. 

The crystal Ti,O, does not undergo a magnetic phase transition, hut, as conjeo 
tured by Agyei and Birman (1990) on the basis of its exhibition of the linear ME 
effect, it may be antiferroelectric. If this is indeed the case, then it should order 
antiferromagnetoelectrically at its antiferroelectric transition point and should be an 
example of secondary magnetic crystals. Other probable secondary magnetic and 
electric crystals are the transforming A-15 crystals. Because of the importance of this 
group of crystals, we shall discuss them in a separate subsection. 

4.3. Spontaneous piezomagnetism and piezoeleclricity in Ihe rransfoming A-15 ctystah 

Shirane and Axe (1971) have, on the basis of a neutron diffraction analysis, assigned 
the space group D$ (P4,lmmc) to the low-temperature phase of Nb,Sn. On the 
other hand, Agyei and Birman (1977) have shown that the (Fedorov) space group 
of the low-temperature phases of the transforming A-15 crystals, A,B, exemplified 
by Nb,Sn and V,Si, should be Czv (P4,mc).  The A-atom displacements predicted 
by Agyei and Birman are in complete agreement with the displacements found by 
Shirane and Axe to occur in Nb,Sn, and the question therefore is whether or not the 
tetragonal phase of these crystals contains a centre of inversion. It cannot be claimed 
that the experimental study has provided a definitive answer to the question because, 
according to Friedel’s law, a neutron diffraction analysis cannot distinguish between 
a centrosymmetric and a non-centrosymmetric crystal. 
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The question could easily have been resolved by finding out whether or not the 
tetragonal phase is piezoelectric, But, perhaps, it has hitherto appeared not to be of 
such interest as to warrant such an investigation. Below we demonstrate that it is of 
considerable theoretical and, perhaps, practical interest We shall show that, if the 
tetragonal phase has the space group Civ, then it may not only be piezoelectric, but 
may also exhibit spontaneous ferropiezomagnetism and ferropiezoelectricity, as well 
as the semi-spontaneous ME effect. 

As shown by Agyei and Birman (1977), the cubic-to-tetragonal DSPT of the A-15 
crystals, &B, results in the break-up of the A-atom sublattice (the t-sublattice) into 
two daughter t-sublattices (DS). One of them, referred to below as DS I, has four 
atoms in the unit cell and site point group (SPG) C, ( m ) ,  while the other, designated 
below as DS 11, has two atoms per unit cell and SPG &,, (“2). The DS I reference 
site (point group C: = 1, uu) admits of the existence there of an electriodipole 
moment and a magnetic moment 

with HI = m as its magnetic point group; while the DS I1 (reference sitc point group 
C& = 1, C,,, us, u v )  can undergo an elcctric and a magnetic transition giving rise 
to the moments 

at the reference site and a sublattice site point group ffl1 = m‘m‘2 without any 
change in the. sublattice’s crystallographic symmetry group, i.e. the symmetry group 
with the time-reversal operator 0 replaced by the identity operator 1. 

Now, according to Agyei and Birman’s (1977) theory, the order parameter 
of the DSPT is the irreducible component q, = - cyy of the strain tensor 
a = ( c l ,  c2, 0, 0,  0,  0). For the NI = m and HI, = ““2 groups, 
this tensor corresponds to the stress tensors U, = (al, u2, us, 0 ,  us, 0)  and 
uII = (ul,, u2, crs, 0, 0, 0), respectively. Further, the groups H I  and H I ,  admit of 
piezoelectnc, 7 [ ,  and yl,, and piemmagnetic, A, and A,,, tensors such that we have 
from equations (8) and (9) and the foregoing 

and 

Thus it follows from (10) and (12) that generally p,  and ml will not be aligned 
along the directions pb and mb, respectively. Hcnce piezoelectric and piezomagnetic 
moments generally cannot arise at the DS I sites. 
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On the other hand, as can be seen from (11) and (13), pl1 and mII coincide in 
direction with p t  and m:, all being aligned along the z direction. Such moments 
can therefore arise at the refercnce DS I1 site at the DSPT point. Further, from the 
transformation group of this sublattice it follows that the moments at the second site 
in the unit cell will also be aligned along the z direction. Hence the DS I1 may exhibit 
spontaneous ferropiezomagnetism and ferropiezoelectricity in the z direction. It will 
then have site point group (SPG) m’m‘2, global point group (GPG) 4m‘m‘ and space 
group (SG) P42m‘c‘, while the DS I will have SPG m, GPO 4mm and SG P42mc. 
The daughter B sublattice will have SPG “ 2 ,  GPG 4mm and SG P4gnc and the 
actual space group of the daughter crystal should then be P4pz’c’. 

The possibility of DS 11 exhibiting spontaneous ferropiezomagnetism and fer- 
ropiezoelectricity arouses interest in connection with the superconducting transition 
in these crystals. 

The point is that the magnetic, H,, and electric, E,, fields that will be produced 
at the DS I1 sites by the spontaneous piezomagnetic and piezoelectric effects will be 
aligned along the z direction, and therefore will be parallel to each other. Further, 
the point groups m’m’2 and 4m’m’ admit of non-null magnetoelectric susceptibility 
tensors, as and og, with only the diagonal elements different from zero (Birss 1964). 
Consequently, if indeed the DS I1 is ferropiczomagnetically and ferropiezoelectrically 
ordered, then it may also exhibit the linear ME effect (as indeed may the DS I and 
the B-atom sublattice). If  it does, then the following interesting phenomenon should 
occur. The electric field E,, due to the spontancous magnetoelectric dipole moment 
p,, = as. H ,  will be parallel to, and therefore will enhance, the field E,. Similarly, 
the magnetic field H,, due to the moment mME = a,. E, will be parallel to, and 
therefore will enhance, the field H,. This mutual enhancement of the piezomagnetic 
and piezoelectric fields H ,  a,nd E, may intensify as the temperature is lowered below 
the DSPT point and may ultimately lead to the spontaneous ordering of the motion 
of the weakly bound electrons along the DS I1 chains and, thus, to the onset of 
superconductivity. The coexistence and parallel alignment of the H, and E, fields 
may also explain the high critical fields H ,  of these superconductors. 

But all this may hold only if the Fcdorov space group of the crystals is P4?mc 
and not P4Jmmc. The resolution of the question whether or not the crystals are 
centrosymmetric is therefore of considerable interest. The experimental observation 
of the ME effect in them will not only resolve this question, but will also confirm 
the prediction that their Shubnikov space group is P4*m‘c’ and, perhaps, open up 
a new avenue for research into the mechanism underlying the transition into the 
superconducting state. 

5. Similarity OF MEDS transitions 

Underlying the foregoing treatment of the MEDS transition-related property tensom 
of ctystals i$ the conclusion that MEDS transitions are, from the group-theoretical 
standpoint, entirely similar in the following sense. They all involve the ordering of 
localized moments in a manner entirely governed by the t-sublattice transformation 
group, so that the moment structure of a t-subkdttice is determined solely by this 
group and is independent of the nature of the t-sublattice atom and of the type of 
transition if the difference between axial and polar vectors is taken into account. 
This is exemplified by the cubic-to-trigonal DSPT and magnetic transition observed 
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respectively in the isomorphous peroskites LaAIO, and Mn,GaN, and it seems to 
us to be appropriate to conclude this paper with a brief discussion of them. 

The t-sublattices in these crystals are respectively the 0 and Mn sublattices, 
which therefore have the same structure in the cubic phase. In the trigonal phase 
they have the point group D,, and the displacements in LaAIO, and the magnetic 
moments in Mn,GaN are disposed along the sides of equilateral triangles in the 
(1 11) planes. There is only one difference, viz the transition in LaAIO, leads 
to a doubling of the crystal unit cell in the [I  111 direction, with the triangular 
dispositions of the displacemcnt vectors in any two adjacent (1 1 1) planes having 
opposite senses. But this stems from the difference in bahaviour of axial and polar 
vectors: while a magnetic moment can exist at a centre of inversion, a displacement 
vector cannot. As a result, the cubic-to-trigonal DSPT in a perovskite will be possible 
only if the inversion operator i, which is a symmorphic symmetry operator for the 
parent crystal, becomes the point-group operator part of a non-spmorphic daughter 
crystal symmetry operator, which is possiblc only if the transition leads to a doubling 
of the crystal unit cell. I n  fact, to describe this transition, we only need to modify the 
coset decomposition that describes the magnetic transition in Mn,GaN (Agyei 1981) 
to take account of this. 

The modified coset decomposition can be reduced to the equivalent form 

{ l lo ,  0 ,  OID, 

{C,Il - i, 0 ,  f I D 4  

Iilo, 0,  ID, 
I ~ C , ~ I + ,  0 ,  +ID, 
{ic:lio, i, +ID, 

IC:ilO, - f ,  $ID4 

where the coordinate origin has been shifted to the ( i ,  f,, 0) site. 
For this RPCC transformation group, the only site transition that takes the crystal 

into the trigonal phase with point group D,, ( h i )  is the transition D, -+ Ci = 
1, C,, (where CZb is rotation through 180’ about the [ i l O ]  axis), induced by the 
r, (B,) representation of D,. The displacement that occurs at the t-sublattice 
reference site (the (+, f ,  0) site in the original coordinate system) must thercfore 
be in the [?lo] direction, and can be denoted by the vector up’ = ( -A ,  A ,  0) .  The 
displacements a t  the other sites can be obtained as the results of the action of the 

in the order starting from {C311-$, 0, $1. With the superscripts on the symbols uf’ 
dropped, these displacements are u t  = ( 0 ,  -A,  A) ,  u2 = ( A ,  0 ,  -A), U, = 
(A,  -A, 0), u., = ( 0 ,  A, -A) ,  us =(-A,  0 ,  A), in complete agreement with 
the experimentally observed 0-atom displacement pattem (Cochran and Zia 1968). 

The disposition of the magnetic moments in the Mn,GaN unit cell is identical 
with that of the vectors uo, U, and U>, or, for that matter, with that of us, U, and 
u5 (Bertaut er a1 1968, Agyei 1981). 

Thus the magnetic moment structure in Mn,GaN is the same as the displacement 
vector structure in LaAIO,, except for the change in sense of the triangular dispo- 
sitions of the displacement vectors as we move from one (1 1 1) plane to the next. 

coset operators {RklVk} in (14) on ur’: U?’ = {RklVk)uo ( 0 )  , with k = 1, . . . , 5 
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Let us further note that, while the cubic-to-trigonal DSPT in the peromkites must 
necessarily be cell-doubling transitions for the reasons given above, the correspnd- 
ing magnetic transitions need not always be cell-preserving. ‘In other words, from the 
group-theoretical standpoint, a cubic peromskite can undergo a magnetic transition 
that gives rise to a magnetic structure identical with the displacement vector structure 
exhibited by LaAIO,. The point group of the daughter crystal will then be 3”’. 

6. Conclusions 

In the present paper we have defined and carried out a microscopic group-theoretical 
analysis of the primary crystal properties associated with MEDS transitions. We have 
shown that: 

(i) DSPT involve the ordering of atomic displacement vectors of microscopic strains, 
and are therefore similar to magnetic and electric transitions; 

(U) the macroscopic tensors characterizing MEDS-rehted bulk properties of crystals 
are sums of atomic property tensors; and 

(iii) these atomic property tensors allow the appearance in a crystal of sponta- 
neous piezomagnetism and/or piezoelectricity at its DSPT point TD and/or spontaneous 
magnetoelectricity at its ferroelectric transition point TE, so that the crystal can be in 
a weak (or secondary) magnetic state in the temperature region TM < T < TD or  TE 
and/or weak (or secondary) electric state in the temperature region TE < T < To. 

As examples of crystals that may exhibit secondary magnetic and/or electric or- 
dering, we cite, among others, the crystal Ti,O, and the transforming A-15 crystals. 
The case of the transforming A-15 crystals is discussed in some detail; it is shown 
that these crystals may exhibit not only the semi-spontaneous ME effect, but also 
spontaneous piezomagnetism and piezoelectricity, and that their transition into the 
superconducting state and their high critical fields H ,  may be connected with these 
effem. 

Finally, the similarity of MEDS transitions is illustrated with the DSPT and magnetic 
transition observed respectively in the isomorphous perovskites LaAIO, and Mn,GaN. 

Tb the extent that the results obtained in the present paper encompass the results 
obtained by Agyei and Birman (1990), we can say that they have some experimental 
support. (Note also the illustration of the similarity of MEDS transitions.) However, 
they require more experimental corroboration. Of greatest interest is the verifica- 
tion of the predictions concerning the transforming A-15 crystals. Their experimental 
confirmation will undoubtedly lead to a better understanding of the mechanism un- 
derlying the transition into the superconducting state of these crystals. 

In conclusion, let us note that these results could not have been obtained on the 
bash of the Neumann principle alone. Indeed, the analysis brings to the fore the 
limited scope of the principle. 
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