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Abstract. The primary properties acquirable by a ¢rystal upon undergoing a displacive
structural phase transition (DSPT) and/or magnetic and/for electric transition are defined
with the aid of a Gibbs free-energy expansion, and a microscopic group-theoretical anal-
ysis of them is carried out. The properties are, apart from those which define the
transitions, piezomagnetism, piezoelectricity, magnetoelectricity and piezomagnetoelec-
tricity. It is shown that the macroscopic tensors characterizing them are sums of atomic
property tensors, and, as-a result, a crystal may exhibit spontaneous piezomagnetism
and/or piezoclectricity below its DSPT point Tp and/or spentancous magnetoelectricity
below its ferroelectric transition point Tg. A crystal with a magnetic transition tempera-
ture Ty < T or Tg (or one with Ty < Tp) may therefore be in a weak or secondary
magnetic (or electric) state in the temperature region Ty < T € Tp or Tg (or
Te < T £ Tp). Thus it is found, in particular, that a crystal with Ty < Tp or
T may exhibit macroscopic properties characterized by axial c-tensors at temperatures
T g Tp or Tg, and not just at T £ Tyy. Among the crystals cited as being capable
of going into the secondary magoetic and/or clectric state are the transforming A-15
crystals. It is shown that they may exhibit not only the linear magnetoelectric effect,
but also spontaneous piezomagnetism and piezoelectricity, and that their transition into
the superconducting state and their high critical fields H. may be connected with these
properties. The analysis brings to the fore the limited scope of the Neumann principle.

1. Introduction

Crystals, as is well known, undergo four basic phase tramsitions that leave them
in the crystalline state, namely structural (displacive and order-disorder), magnetic
{(anti)ferromagnetic), electric ((anti)ferroelectric) and superconducting transitions.
The result of one or more of the first three transitions in a crystal is the acquisition
by the crystal of certain static tensor properties governed by the symmetry of the
crystal’s low-temperature phase (the daughter crystal).

These properties are usually described on the basis of the Neumann principle,
which assumes the crystal point-group symmetry to be the governing symmetry. It
states: The static macroscopic properties of a crystal musi be invariant under the crystal
point-group operations.

Thus the principle can be used to describe the macroscopic, but not, strictly
speaking, the microscopic, aspects of the properties in question. In particular, it
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cannot generally be used to determine the magnetic or electric structures of a crystal,
and cannot say anything about phenomena whose effects average out to zero over the
crystal unit cell, such as, for example, the phenomena of cell-preserving antiferromag-
netism and antiferroelectricity, in which the magnetic and electric unit cells coincide
with the crystallographic unit cells.

The limitations of the principle and of descriptions based on it have long been
recognized (see e.g. Opechowski and Guccione 1965), and about a decade and a half
ago Agyei and Birman (1977) constructed a microscopic group-theoretical theory of
phase tramsitions in crystals, which allows easy determination of the magnetic and
electric structures of crystals and describes the phenomena of cell-preserving antifer-
romagnetism and antiferroelectricity. In the present paper we define (section 2), and
carry out on the basis of that theory, a microscopic analysis of a set of primary static
tensor properties acquirable by a crystal upon undergoing magnetic and/or electric
and/or displacive structural phase transitions. We shall show (sections 3 and 4) that
the macroscopic or global tensors characterizing these properties possess a micro-
scopic structure whose consideration reveals the possibie existence of the phenomena
of spontaneous piezoclectricity, piezomagnetism and magnetoelectricity, which give
rise to weak (designated below as secondary) electric and magnetic states or crystals.

The secondary magnetic state is of particular interest because a crystal in such a
state can, subject to the Neumann principle, also exhibit static properties characterized
by axial c-tensors, i.e. axial tensors that change sign under time reversal. Thus, while
the Neumann principle can be used to determine whether or not a known magnetic
crystal can exhibit a static property characterized by an axial c-tensor, a crystal that is
at present considered to be non-magnetic may require a microscopic analysis before a
definitive conclusion as to whether or not it can exhibit such an effect can be drawn.

Such an analysis will require the use of the now generally recognized fact that
magnetic and electric crystals are localized-moment (magnetic and electric-dipole)
materials. We demonstrate in the present paper that a crystal below its displacive
structural phase transition (DSPT) point can also be considered to be a localized-
moment material, the moment here being an atomic displacement vector or a strain
tensor. Thus all three types of phase transition give rise to localized-moment daughter
crystals. The conclusion that a macroscopic property tensor must have a microscopic
structure follows from this fact.

We also infer from this fact that these localized moments are the primary order
parameters of the transitions, the bulk or sublattice magnetizations (polarizations)
that are normally taken to be the order parameters of ferromagnetic or cell-doubling
antiferromagnetic (ferroelectric or cell-doubling antiferroelectric) transitions being
derived from these localized moments.

The atomic displacement or localized strain is now generally acknowledged to be
the order parameter of a DSPT, but an inconsistency, due perhaps to adherence to the
Neumann principle, can be perceived in the literature: whereas the microscopic (i.e.
localized) entity is acknowledged to be the order parameter, the latter is nonetheless
deemed to possess the point-group symmetry of the crystal (see e.g. Scott 1974). We
shall show that a localized moment must possess the local or site symmetry, and
that it is the set of localized moments in the crystal unit cell that must possess the
crystal point-group symmetry. This principle applies equally to magnetic, electric and
displacement or strain-tensor moments, and it reveals the similarity, from the group-
theoretical standpoint, of magnetic, electric and displacive structural (MEDS) phase
transitions. We shall demonstrate (section 5) that this similarity is manifested by the
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DSPT and magnetic transition observed respectively in the cubic perovskites LaAlO,
and Mn,GaN.

These results are summarized in section 6.

The following are explanations of a few terms and symbols used in the paper.
We shall designate as protolypic a non-magnetic, non-electric single crystal with no
history of a DSPT, so that it is entirely free from internal stresses and strains. By
the term sublattice we shall mean a crystal substructure possessing the full crystal
symmetry, and formed by identical atoms (or ions) occupying equivalent sites in
the crystal. The sublattices that actually undergo the magnetic or electric ordering
or the distortion in a phase transition will be referred to as f-sublattices. Lastly,
the spontaneous magnetizations, polarizations and strains that arise respectively in
magnetic, electric and displacive structural transitions will be denoted by M), p(©)
and €® = (9, ..., &®) in matrix notation: M@ = x{m). g p) = y(e). gG)
and € = g- o), where x{™ (x(*)) and s are the magnetic (electric) susceptibility
and elastic compliance tensors and H®, EG) and o) = (o'?,...,6(") are the
corresponding magnetic, electric and stress-tensor field intensities.

Finally, below we assume that (i) the parent crystal is a single crystal, (ii) the
daughter crystal is single-domain and (iii) one and the same t-sublattice undergoes
all the transitions (magnetic and/or electric and/or displacive structural) observed in
the crystal,

2. Primary static tensor properties associated with MEDS transitions

Consider a single-domain crystal with spontaneous magnetization M(®), polarization
P and strain (®). Let the crystal be located in external magnetic H(®) and electric
E() fields and let it be subjected to a symmetrized stress-tensor field (%), The Gibbs
free energy ® of the crystal will then be a function of the temperature T" and the
resultant fields H = H® 4+ HO E = E© 4 E® and ¢ = ¢®) + o). Let these
fields be sufficiently weak, so that ¢ possesses a Taylor expansion in them. Then,
if @, is the free energy in the absence of these fields, we can, using the Einstein
summation convention, Greek letters for indices running from 1 to 6 and roman
letters for those ranging from 1 to 3, write (see also Schmid 1975): ‘

®(H,E,o,T) - &y(T) = —3x{7 H,H; - XV ELE,

- ‘%‘Sp_yO'#O'y - atJH‘:E_; - Aivﬂiau —"Yquiau - ﬁijVHI'Ejau
+ (I’(r)(H:Esa'a T). (1)

Here, the first, second and third terms on the right-hand side describe, respectively,
the first-order magnetization, polarization and deformation effects in the crystal, and
the fourth, fifth, sixth and seventh terms describe the magnetoelectric, piezomagnetic,
piezoelectric and piezomagnetoelectric effects, respectively, «, A, v and = being the
magnetoelectric-susceptibility, piezomagnetic, piezoelectric and peizomagnetoelectric
tensors.

For the three fields H, E and o, these seven effects are the primary effects for
crystals, in the sense that all the other possible effects, described by the terms in the
expansion of the last term in (1), are higher orders (in weakness) of them. Indeed,
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the expansion (1) with ®{*} ignored can be considered to be exact for zero external
fields, when H = H), E = E() and ¢ = o) (which is the case we shall mostly be
concerned with below). To see this, we only have to note that, by making the requisite
number of tcnsor contractions with the vectors H() and E() and the tensor o)
in any term of the ®{) expansion, we can reduce that term to one identical in
form with one of the seven terms. (Actually, the piczomagnetoelectric term ¢an be
similarly reduced to one identical in form with the magnetoelecttic, piezomagnetic or
piezoelectric term; we only include it here to make the number of primary effects
combinatorially complete.) Therefore, we can, by appropriately renormalizing the
tensors (™), x(®), s, a, A, 4 and x, make the first seven terms on the right-hand
side of (1) take account of ®("). Thus there is no loss of generality when ®(7) js
ignored in discussions of spontaneous fields or indeed of effects in external fields that
ar(e)weak compared to the spontaneous fields. Consequently, below we shall ignore
$lir),

The effects described by the terms of the Gibbs free-energy expansion induce in
the crystal a magnetization { M), an electric polarization (P) and a strain-tensor ()
field. The fields produced by the primary effects are linear in H, E and o, and can
be obtained by differentiating the truncated or primary free energy ®(F) = @ — &)
with respect to H, E and o. Below we shall consider these fields in the limits when
H() -0 for M, E) — 0 for P, and ¢®) — 0 for ¢. In this approximation we
have

(r)
M:—(a(b ) =MODta.-E4+A e+ B w0 2)
BH T LEriel=p .
(P}
P=—(a§E) =PVt - Ht~y-0+H 7w 3)
T IEt=)=0 '
and
8@ 0
e:-—( ) =+ A H 4~y E+H.x-E. 4
8¢ /o (ator=0

Let us now consider the fields H, E and o to be purely spontaneous fields, due (in
the first approximation) to M(®, P(0) and €(%), respectively. Then M, P and ¢ must
transform with the crystal under its symmetry operations. If they are considered to
be macroscopic quantities, then they must be invariant under the crystal point-group
operations. It then follows from the relations (2)—(4) that the property tensors «, A,
~ and = must, if the effects they characterize occur in the crystal in question, also be
invariant under the point-group operations. This is the Neumann principle.

According to this principle, a static effect can occur in a crystal only if there exists
a corresponding non-null property tensor that is invariant under the operations of
the crystal point group. In particular, if the crystal is non-magnetic, then its property
tensors must be ¢-tensors (i.e. tensors that are invariant under time reversal), and all
c-tensors must identically vanish in such a crystal. Further, analysis shows (see e.g.
Birss 1964) that polar i-tensors of odd rank and axial i-tensors of even rank should
vanish identically in centrosymmetric ¢rystals.

Thus the Neumann principle leads, in particular, to the following two ‘selection’
Tules.
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(i) Only magnetic crystals can exhibit static effects characterized by c-tensors.
(ii) Centrosymmetric crystals cannot exhibit static effects characterized by even-
rank axial and odd-rank polar i-tensors.

These rules strictly apply only to the external-field-induced bulk effects. Cen-
trosymmetric crystals clearly can exhibit spontaneous antiferroelectricity, and, as
shown below, certain non-magnetic crystals may exhibit spontaneous magnetoelec-
tricity (SME) and/or spontaneous piezomagnetism (SPM) and/or spontaneous piezo-
clectricity (SPE). A crystal exhibiting SME or sPM will be magnetic (albeit weakly so)
and, hence, capable of exhibiting external-field-induced bulk effects characterized by
axial e-tensors. Thus we shall find that the current definition of a magnetic crystal
needs to be broadened to encompass such crystals,

These results are obtained in section 4. In the next section we show that the
daughter crystals arising in strain-induced DSPT (referred to below as SIDSPT daughter
crystals) can be considered to be localized strain-moment materials and, on the basis
of this, argue that property tensors are, like magnetic and electric-dipcle moments,
entities belonging to the t-sublattice atoms, and that a global property tensor is the
sum of the corresponding property tensors of the t-sublattice atoms. The results
obtained in section 4 follow from these conclusions.

3. Localization of spontaneous strains and the microscopic structure of bulk property
tensors

3.1. SIDSPT daughter crystals as localized-strain-moment materials

As Agyei and Birman (1977) have shown, the t-sublattice atom displacements that
occur in a DSPT transform among themselves under the operations of the daughter t-
sublattice transformation group, similarly to the magnetic and electric-dipole moments
in magnetic and electric crystals. Consequently, we can, by analogy with the latter
crystals, regard DsPT daughter crystals as localized-displacement-moment materials.
Below we shall show that in strain-induced DSPT (SIDSPT) the atomic displacements are
induced by localized strains, so that the resulting daughter crystals can be considered
to be localized-strain-moment materials. We do this on the basis of Born’s molecular
theory of elasticity and Agyei and Birman’s (1977) theory of phase transitions in
crystals.

According to the Born theory (see Born and Huang 1968), any homogeneous
crystal deformation, i.e. one that leaves the material in the crystalline state, can be
built up by subjecting the crystal particles (molecules or atoms) to the following
displacements:

u(h) = u(m) +e-7(3,) )

where »(2,) is the initial position vector of the mth atom in the gth unit cell; w(?,)
and u(m) are respectively g-dependent and g-independent displacements of this
atom; and e is a tensor composed of deformation parameters, i.. a strain tensor.
The same mechanism can be assumed to underlie DspT-induced homogeneous
deformation of crystals, with the difference that the displacement u(m) and the
tensor e arise spontaneously, and that not all the atoms in the crystal need undergo
such displacements. Indeed, experiment shows that, normally, the atoms of only one
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sublattice undergo displacements in a DSPT, and we shall assume this to be the case
in the present paper.

Thus let a prototypic single crystal in zero external magnetic, electric and stress
fields undergo a DSPT as a result of the spontaneous displacement of the atoms of one
sublattice—the t-sublattice. In this case the continuum approach to the description
of crystal deformation is inadmissible, and we must treat the set of vectors »(%,} as
a discrete set and the spontaneous tensor € = %), when it arises, as one localized
at the site of the atom on which it acts. Further, since the atoms in a unit cell can
be displaced in different directions, €(°) will generally vary from atom to atom within
the t-sublattice unit cell. We shall take this fact into account by assigning to &) the
label of the atom on which it acts. Also, because of the translational symmetry, we
need to consider only the displacements of the t-sublattice atoms in a parent crystal
cell corresponding to the daughter crystal unit cell. We shall designate this cell as the
g = 0 or reference parent crystal cell (RpcC). Taking these points into account, and
setting the translation vectors u(2,) = uly’, u(m) = wu,, and »(%,) = w,,,, We can
write (5) in the form

ugﬂlzum—[—cfﬂ)-wﬂm m=0,1,...,n—1. (6)

Here n is the number of t-sublattice atoms in the RPCC, and the m = 0 atom is the
reference t-sublattice atom.

The vectors »,,, and the strain tensors €9 in (6) thus give the atomic displace-
ments arising in the DSPT. Let us show that they virtvally determine the transition
(i.e. fix the order parameter and the daughter crystal point group) and elucidate the
relation between them.

Let G, and G, be the space and point groups of, and H, the t-sublattice site
point group in, the parent crystal, and let G, G and H be the corresponding groups
for the daughter crystal. Finally, let 7 be the translation group of the daughter
crystal. Since DsPT-induced deformations are always slight, 7 can bé considered to
be a subgroup of the parent crystal’s translation group 7,, the two being identical
when the transition is cell-preserving. The transformation group of the RPCC will be
the factor group F, = G,/7, i.e. the space group G, modulo the translation group
7. By locating the coordinate origin at a t-sublattice site, we can write Fj as a set of
left cosets {R,,|V;,, } Hé, whete m = 0,1,...,n~1; R, € Gy — Hy for m # 0,
and R, = 1, the identity element; the V,, (Vy; = (0,0,0)) are the t-sublattice
atom position vectors relative to the new coordinate origin; H; coincides with, or is a
subgroup of, H, according to whether the transition is or is not cell-preserving; and
n, the number of t-sublattice sites in the RPCC, is equal to the index of H§ in G,

The coset decompaosition of Fy, in the case of cell-preserving DSPT is trivial. Its
feasibility in the case of cell-non-preserving transitions will be demonstrated elsewhere
in an extension of the Agyei-Birman theory to cover such transitions. Here we shall
only touch upon the gencral theory under the assumption that the coset decomposition
can always be carried out. Further, we shall assume the DSPT in question to be a
transition to a single-domain daughter crystal belonging to a given crystal class.

For such a transition the coset decomposition will be unique in the case of a cell-
preserving DSPT, when H} = H,. For a cell-non-preserving DSPT more than one (I,
say) transformation groups Fy; = G/ 7, comprising the cosets {R,, |V, } Hy; (J =
1, 2, ...,1) will in general be admissible, It is, however, easy to see that the various

o; Will be isomorphic subgroups of ff;, and will yield the same daughter crystal
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point group G. The corresponding daughter crystal space groups G; will generaily
not be the same since the translation groups T; will generally not coincide, but
being interested only in G here, we can ignore this subtlety and take any one of the
admissible Fy;, with the index j dropped, as the RPCC transformation group.

In what follows then, by F;, we shall mean an admissible set of cosets
{R,,|Vom} Fl§ in the case of cell non-preserving DSPT and the set of cosets
{Rp|Vow} Ho in the case of cell-preserving DSPT. This will constitute the trans-
formation or symmetry group of the n t-sublattice atoms in the RPCC. Let us first
suppose that the transition does not break up the t-sublattice into two or more daugh-
ter crystal sublattices. Then the daughter t-sublattice unit-cell transformation group
F = G /T will contain the same number of cosets of the form {R,, |V, } H, where
the V,, are the new position vectors of the t-sublattice atoms: m =0,1,...,n— 1.
In consequence, the global transition G, — G will be governed by the site transition
H} — H, whose order parameter must therefore be the order parameter of the
global transition, i.e. of the DSPT.

Let us pow suppose that the transition breaks up the parent t-sublattice into
s > 1 daughter t-sublattices. It is easy to see that we can always split the coset de-
composition {R,.IVy,.} H} into s sets of cosets { RS |V) YH, (i=1,...,8m; =
0,1, —1;¥;., n; = n) that will go over into s transformation groups, with
cosets { Rm)l (')}H,-, describing the s daughter t-sublattices. Thus in this case the
global transition will be governed by the site transitions Hf — H,.

Let H, C H] be the group of highest order in the set {H; ;’: Hil £ sh
Then it can easily be shown that H; C H,. Further, if, following Lanclau (1937)
we assume that the transition is induced I_:y a single irreducible representation [ of
H}, (see below), then the site transitions must have the same order parameter, which
must clearly be that component of the basis vector of ' which is invariant under the
operations of the H,(i = 1,2,...,s) or under the operations of H, since H, C H,.
This order parameter must be the order parameter of the DSPT.

Thus in either case the order parameter of the H} — H, (= H in the s = 1
case) site transition is the order parameter of the DSPT in question. Let us show
that this order parameter is the displacement u, or the tensor e(n) in relation (6) for
the reference t-sublattice atom. In doing this we shall, for smphcnty of exposition,
consider only the s = 1 case, the generalization to the s > 1 case being trivial.

Evidently, the reduction in the t-sublattice sitc symmetry, i.e. the transition Hj
H, 15 due to the t-sublattice atom dxsplaccmems 'u.(m , which must be such that u(o)
is invariant under the operations of H and »{Y = {R,_ [V, }ul”. Consequently, we
need to consider only the Hj — H transition at the reference t-sublattice site.

On the basis of the Landau theory of phase transitions, this transition will be
induced by an irreducible polar-vector or polar-tensor representation, Iy, of Hj. Let
us consider the case when the transition takes the crystal into a given crystal system
with the minimum degree of distortion.

The group H will, on the basis of the Goldrich-Birman chain subduction criterion
(Goldrich and Birman 1968), then be that maximal subgroup of Hj whose polar-
vector or polar-tensor unit representation I'; is subduced once by ', and the order
parameter of the transition will be T";’s basis vector, which can be found from the
character tables of the 32 crystallographic point groups. For a DSPT it, and hence the
order parameter of the transition, may be (i) a displacement «; in the direction é,,
where é; = (2,7 or k) is the unit vector along one of the coordinate axes, (i) an
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irreducible set n; of strain-tensor components or, equivalently, the strain tensor ¢;
with 7; as its sole non-trivial irreducible set of components (i.e. with #; as the only
irreducible set that is not invariant under the operations of Hy), or (iii) either a; or
n; (€;), which may or may not be coupled according as the vector u; = ¢, « &; is Or
is not different from zero. Expressed in the soft-mode language, this assertion states
that a DSPT may be driven:

(i) solely by a soft optic phonon;

(ii) solely by a soft acoustic phonon, i.e. may be purely strain-induced;

(iif) by coupled soft acoustic and optic phonons; or

(iv) by a soft acoustic (or optic) phonon in the presence of a soft optic (or
acoustic) phonon to which it is not coupled, at least in first order.

The order parameters a; and ¢; arise spontaneously at the reference t-sublattice

site, and can therefore be identified with the quantities u, and ef,n) in relation (6)
with m = 0. They are each invariant under the operations of the reference t-
sublattice site point group, and determine the displacement ugOJ at the site, the
displacement ul) = u,, + & wy,. at the mth site being given, as shown above,
by uls) = {Rm|Vm}u{D°) (m # 0). Hence the sets {u,,} and {2’} defined by (6)
each possesses the daughter crystal point-group symmetry (i.e. the elements of each set
transform among themselves under the crystal point-group operations), while each elemert
possesses the corresponding site point-group symmetry.

Thus the quantities «,, and €'Y behave under the crystal symmetry operations
in precisely the same way as magnetic or electric-dipole moments do in magnetic or
electric crystals. It is therefore not inappropriate to describe DSPT daughter crystals
as displacement-moment or, in the case of SIDSPT daughter crystals, on which we shall
henceforth focus our attention, strain-moment materials.

In SIDSPT daughter crystals, it is the strains €') that maintain the t-sublattice
atoms in their new positions and determine the deformation or bulk strain of the
crystal. Thus the first term on the right-hand side of (4), referred to the daughter

crystal unit cell, is the sum €(® = 7 _ {9, which may or may not be equal to zero.
In other words, the crystal may be deformed even though its bulk strain is equal to
zero, just as a crystal may be magnetic (electric) even though its bulk magnetization
(polarization) is equal to zero.

3.2, The property tensors as sums of atomic properiy lensors

Let us now consider the low-temperature phase of a prototypic single crystal that
undergoes in zero external H, E and o fields a strain-induced DSPT and at or below
the DSPT point a magnetic and/or electric transition, leading to the appearance of,
besides the first term on the right-hand side of (4), one or more of the other terms,
The effect of these terms is to distort the crystal further. Like the distortion due
to the first term, the distortions induced by these terms must be due to t-sublattice
atom displacements if the material is to remain truly crystalline. Hence these terms
must also be the sums of localized strains: (A- H),, = A, H,, (4 E),, =
Y By (Hew E),, =H, +mx, -E, , where H_ and E_ are the spontancous
magnetic and electric field intensities at the th t-sublattice site and X, -y, and
7, can be described as the piezomagnetic, piczoelectric and piezomagnetoelectric
tensors of the mith t-sublattice atom. As a result, ¢ from (4), referred to the crystal
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unit cell, can be written as e = > _, €., where

m=1"m?
Em=E£:-]L)+Am°Hm+‘fm’Em+Hm'"m'Em' (7)

It follows from the foregoing that the macroscopic property tensors A, v and « are
the sums of atomic property tensors, and we can conclude that the third and fourth
terms on the right-hand sides of (2) and (3) must be sums of localized vectors. The
magnetoelectric susceptibility tensor o has been shown by Agyei and Birman (1990)
to be the sum of localized or atomic magnetoelectric susceptibility tensors «,, in
localized magnetic and/or electric-dipole moment materials. In such materials, then,
we have from (2) and (3}, referred to the erystal unit cell, that

n
M=% M,
m=1
and
T
P = P,
m=1
where
Mm=Mvgr?)+am'Em+Am'am+Em'"m°om (8)
and
Po=FP to, Hyt v On+Hy %y 0. ()

Thus the global or macroscopic property tensors associated with MEDS transi-
tions arc sums of atomic property tensors. An atomic property tensor A_ (=
Qs Mgy Y O o, ) must be invariant under the operations of the atom’s site point
group, and the set {A,,} of such tensors in the crystal unit cell must have the crystal
point-group symmetry.

If the macroscopic property tensor A = . A, is not a nuli tensor, then the
macroscopic effect characterized by A may occur in the crystal. If, on the other
hand, A is a null tensor, then the effect will be forbidden, but, as we shall show in
the next section, the presence of the A,, may allow the occurrence of other effects
in the crystal.

Finally, to conclude this section, we must note that DSPT driven solely by soft optic
phonons are not covered by the expansion (1) since no spontaneous strains arise in
such transitions. The crystal deformation in this case is brought about by a rigid
displacement of the t-sublattice relative to some non-equivalent sublattice. This is,
for example, the only mode of deformation possible in a cell-preserving DSPT in which
the t-sublattice unit cell contains only one atom, such as, for example, in the cubic-
to-tetragonal DSPT that occurs in the perowvskites BaTiO,, PbTiO; and KNbO,. For
such transitions the Gibbs free energy should be expanded in terms of the optic mode
amplitude, with the frequency serving as the primary property tensor. The expansion
will, in the absence of external stress, contain no stress terms and the crystal that it
describes will not exhibit the spontaneous-stress-related properties discussed below.
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4, Spontaneous piezoelectricity, piezomagnetism and magnetoelectricity (PPM) and
their effects

4.1. Spontaneous PFM; secondary electric and magneltic states

It is well known from experiment that (i} most magnetic transitions are preceded
by DSPT and (ii) a crystal that orders both electrically and magnetically usually goes
into the electric phase first. Let us, on the basis of these facts, consider a prototypic
crystal that undergoes in zero external H, E and ¢ fields an SIDSPT at a temperature
T, and/or an electric transition at T and a magnetic transition at T, under the
following assumptions:

(ii) one and the same sublattice is the t-sublattice for ail the transitions that occur
in the crystal;
(iii) no DSPT occurs at T, or in the temperature range from T to Ty,

Let us first consider the case when the crystal undergoes a DSPT and then an
electric transition.

The transition into the electric state will be possible only if the site point group H
of the t-sublattice below Ty, admits of the existence of electric-dipole moments at the
t-sublattice sites. Further, if the point group A also admits of a non-null piezoelectric
tensor + such that the piezoelectric moments p, = =, * o, {where the &, are the
spontaneous stress tensors arising as a result of the DSPT) coincide in direction with
the electric-dipole moments P{® that appear at Tg, then the moments p, can be
non-zero. A crystal in which the moments p, are non-zero can be said to exhibit
spontaneous piezoelectricity in the temperature range T € Tp.

Similarly, if the site point group of the daughter t-sublattice arising in the DSPT
admits of a non-null piezomagnetic tensor A and the existence at the t-sublattice
sites of magnetic moments coinciding in direction with the piezomagnetic moments
m,;, = Ao, then the latter can be non-zero and the crystal may exhibit spontaneous
piezomagnetism below Tp,.

Finally, if magnetic moments M, can coexist with the electric-dipole moments
P,EOJ at the t-sublattice sites in an electric crystal and the t-sublattice site point
group admits of a non-null magnetoelectric tensor « such that the magnetoelectric
moments m; = a - B, (where E, is the electric field due to P,g‘”) coincide in
direction with the admissible magnetic moments M,, then the m, can be non-zero
and the crystal can be said to be capable of exhibiting spontaneous magnetoelectricity
in the temperature range below T,

Thus a crystal can undergo spontaneous piezoelectric and/or piezomagnetic or-
dering at its DSPT point and/or spontaneous magnetoelectric ordering at its electric
transition point. The ordering will be (anti)ferroelectric ((anti)ferromagnetic) ac-
cording as P = Y 7_,p, (M = 3 7_,m;) is or is not equal to zero. We can
therefore speak of spontaneous (anti)ferropiezoelectricity, (anti)ferropiezomagnetism
and (anti)ferromagnetoelectricity.

As electric and magnetic ordering effects, these phenomena are clearly second-
order effects, and a crystal exhibiting spontaneous piezoelectricity can be described as
being in the secondary electric state in the temperature region Ty < T < Tp, while a
crystal exhibiting spontanecus piezomagnetism or magnetoelectricity can be described
as being in the secondary magnetic state at temperatures Ty < T € T, or Tg. They
are, however, of considerable interest, as we shall now proceed to demonstrate.,
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A crystal in the secondary magnetic state in the region Ty < T < T, or Ty
will have as its symmetry group the same type-I or type-I1I Shubnikov space group
that will be assigned to it in the temperature region below Ty, It will, in particular,
not have time reversal as a2 symmetry coperation and therefore can, subject to the
Neumann principle, exhibit any macroscopic property characterized by an axial e¢-
tensor. This generalizes and at the same time further elucidates the result, obtained
by Apyei and Birman (1990), that certain non-magnetic electric ctystals can exhibit
the (external-field-induced) linear magnetoelectric (ME) effect, designated by them
as the semi-spontaneous ME effect. Indecd all the crystals listed in table 2 in their
paper may exhibit spontaneous magnetoelectricity and, as asserted there, the semi-
spontaneous ME effect at T € Tg. All of them, except Ti, O3, may also exhibit the
external-field-induced piezomagnetic effect below T, The odd crystal Ti, O, will be
discussed below,

4.2, Secondary magnetic and electric crystals

In the foregoing discussion we have made no assumption about the value of Ty, and
there is no reason why it cannot be equal to absolute zero. In other words, the actual
magnetic transition need not occur at all. The possibility of its occurrence, ie. the
admissibility of the existence of magnetic moments at the t-sublattice sites, is all that
is required for the crystal to go into the secondary magnetic state at 7y, or Tg. Such
crystals, i.e. those that remain in the secondary state right down to absolute zero, can
be designated as secondary magnetic materials.

Similarly, a crystal that orders piezoelectrically at the DSPT point can remain in
the secondary electric state right down to absolute zero, and such a crystal can be
called a secondary electric material.

Secondary magnetic (electric) crystals are legitimate magnetic (electric) crystals
and the class of magnetic (electric) materials should, perhaps, be broadened to include
them.

The crystal Ti; O, does not undergo a magnetic phase transition, but, as conjec-
tured by Agyei and Birman (1990} on the basis of its exhibition of the linear ME
effect, it may be antiferroelectric. If this is indeed the case, then it should order
antiferromagnetoelectrically at its antiferroelectric transition point and should be an
example of secondary magnetic crystais. Other probable secondary magnetic and
electric crystals are the transforming A-15 crystals. Because of the importance of this
group of crystals, we shall discuss them in a separate subsection.

4.3. Spontaneous piezomagnetism and piezoelectricity in the transforming A-15 crystals

Shirane and Axe (1971) have, on the basis of a neutron diffraction analysis, assigned
the space group D}, (P4,/mmec) to the low-temperature phase of NbsSn. On the
other hand, Agyei and Birman (1977) have shown that the (Fedorov) space group
of the low-temperature phases of the transforming A-15 crystals, A;B, exemplified
by NbsSn and V,;Si, should be Cj, (P4,mc). The A-atom displacements predicted
by Agyei and Birman are in complete agreement with the displacements found by
Shirane and Axe to occur in Nb,Sn, and the question therefore is whether or not the
tetragonal phase of these crystals contains a centre of inversion. It cannot be claimed
that the experimental study has provided a definitive answer to the question because,
according to Friedel’s law, a neutron diffraction analysis cannot distinguish between
a centrosymmetric and a non-centrosymmetric crystal.
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The question could easily have been resolved by finding out whether or not the
tetragonal phase is piezoelectric. But, perhaps, it has hitherto appeared not to be of
such interest as to warrant such an investigation. Below we demonstrate that it is of
considerable theoretical and, perhaps, practical interest. We shall show that, if the
tetragonal phase has the space group CJ, then it may not only be piezoelectric, but
may also exhibit spontaneous ferropiezomagnetism and ferropiezoelectricity, as well
as the semi-spontaneous ME effect.

As shown by Agyei and Birman (1977}, the cubic-to-tetragonal DSPT of the A-15
crystals, A;B, results in the break-up of the A-atom sublattice (the i-sublattice) into
two daughter t-sublattices (DS}, One of them, referred to below as DS I, has four
atoms in the unit ccll and site point group (sPG) C, (), while the other, designated
below as Ds II, has two atoms per unit cell and sPG C,, (mm?2). The Ds I reference
site (point group C¥ = 1, o) admits of the existence there of an clectric-dipole
moment and a magnetic moment

Po = (ps 0, p,)

, (10)

my = (0, m,, 0}
with H, = m as its magnetic point group; while the Ds II (reference site point group
G =1, Cy;, o, o,) can undergo an electric and 2 magnetic transition giving rise
to the moments

Py =(p;, 0, p,)
mg=(0$ 0’ mz)

(11)
at the reference site and a sublattice site point group H,; = m/m’2 without any
change in the. sublattice’s crystallographic symmetry group, ic. the symmetry group
with the time-reversal operator @ replaced by the identity operator 1.

Now, according to Agyei and Birman’s (1977) theory, the order parameter
of the DSPT is the irreducible component n, = €., — ¢, of the strain tensor
€ = (€, €, 0, 0, 0, 0). For the H; = m and H = m'm’2 groups,
this tensor corresponds to the stress tensors o = (o, o,, o3, 0, o5, 0} and
oy = (6,, 05, o3, 0, 0, 0}, respectively. Further, the groups H; and H admit of
piezoelectric, -+, and +,;, and piezomagnetic, A; and X, tensors such that we have
from equations (8) and (9) and the foregoing

.pl :'YI ‘O"] = (p3,'1 pyﬂ pz)
(12)

my = Ay o = (my, my, m,)

and

Pp="" =(0$ 01 P)
11 1 1 z (13)

my = Aoy =(0, 0, m,).

Thus it follows from (10) and (12) that generally p; and m; will not be aligned
along the directions pj and mj, respectively. Hence piezoelectric and piczomagnetic
moments generally cannot arise at the DS I sites.
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On the other hand, as can be seen from (11) and (13), p;; and my; coincide in
direction with pj and mj, all being aligned along the z direction. Such moments
can therefore arise at the reference Ds I site at the DSPT point. Further, from the
transformation group of this sublattice it follows that the moments at the second site
in the unit cell will also be aligned along the z direction. Hence the Ds II may exhibit
spontaneous ferropiezomagnetism and ferropiezoelectricity in the z direction. It will
then have site point group (SPG) m'm’2, global point group (GPG) 4m’m’ and space
group (sG) P4,m’¢/, while the Ds | will have SPG m, GPG 4mm and sG P4,me.
The daughter B sublattice will have SPG mm2, GPG 4mm and SG P4,mc and the
actual space group of the daughter crystal should then be P4,m'c’.

The possibility of DS II exhibiting spontaneous ferropiezomagnetism and fer-
ropiezoelectricity arouses interest in connection with the superconducting transition
in these crystals.

The point is that the magnetic, H,,, and electric, B, fields that will be produced
at the Ds II sites by the spontaneous piezomagnetic and piezoelectric effects will be
aligned along the z direction, and therefore will be parallel to each other. Further,
the point groups m'm’2 and 4m’m’ admit of non-null magnetoelectric susceptibility
tensors, o, and o, with only the diagonal elements different from zero (Birss 1964).
Consequently, if indeed the Ds Il is ferropiczomagnetically and ferropiezoelectrically
ordered, then it may also exhibit the lincar ME effect (as indeed may the DS I and
the B-atom sublattice). If it does, then the following interesting phenomenon should
occur. The electric field Ey,g due to the spontanecous magnetoelectric dipole moment
Pme = o4 H, will be parallel to, and therefore will enhance, the field E. Similarly,
the magnetic field Hy due to the moment myp = a, - E, will be paraliel to, and
therefore will enhance, the field . This mutual enhancement of the piezomagnetic
and piezoelectric fields H, and £, may intensify as the temperature is lowered below
the DSPT point and may ultimately lead to the spontaneous ordering of the motion
of the weakly bound electrons along the Ds II chains and, thus, to the onset of
superconductivity. The coexistence and parallel alignment of the H, and E  fields
may also explain the high critical fields H_ of these superconductors.

But all this may hold only if the Fedorov space group of the crystals is P4,me
and not P4,/mme. The resolution of the question whether or not the crystals are
centrosymmetric is therefore of considerable interest. The experimental observation
of the ME effect in them will not only resolve this question, but will also confirm
the prediction that their Shubnikov space group is P4,m'¢’ and, perhaps, open up
a new avenue for research into the mechanism underlying the transition into the
superconducting state,

5. Similarity of MEDS transitions

Underlying the foregoing treatment of the MEDS transition-related property tensors
of crystals is the conclusion that MEDS transitions are, from the group-theoretical
standpoint, entirely similar in the following sense. They all involve the ordering of
localized moments in a manner cntirely poverned by the t-sublattice transformation
group, so that the moment structure of a t-sublattice is determined solely by this
group and is independent of the naturc of the t-sublattice atom and of the type of
transition if the difference between axial and polar vectors is taken into account.
This is exemplified by the cubic-to-trigonal DSPT and magnetic transition observed
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respectively in the isomorphous perovskites LaAlO, and Mn,GaN, and it seems to
us to be appropriate to conclude this paper with a brief discussion of them.

The t-sublattices in these crystals are respectively the O and Mn sublattices,
which therefore have the same structure in the cubic phase. In the trigonal phase
they have the point group D,, and the displacements in LaAlO, and the magnetic
moments in MnzGaN are disposed along the sides of equilateral triangles in the
(111) planes. There is only one difference, viz. the transition in LaAlO, leads
to a doubling of the crystal unit cell in the [111] direction, with the triangular
dispositions of the displacement vectors in any two adjacent (111) planes having
opposite senses. But this stems from the difference in bahaviour of axial and polar
vectors: while a magnetic moment can exist at a centre of inversion, a displacement
vector cannot. As a result, the cubic-to-trigonal DSPT in a perovskite will be possible
only if the inversion operator 1, which is a symmorphic symmetry operator for the
parent crystal, becomes the point-group operator part of a non-symmorphic daughter
crystal symmetry operator, which is possible only if the transition leads to a doubling
of the crystal unit cell. In fact, to describe this transition, we only need to modify the
coset decomposition that describes the magnetic transition in Mny;GaN (Agyei 1981)
to take account of this,

The modified coset decomposition can be reduced to the equivalent form

{1}o, 0, 0}D,
{C311 - %1 0, '}E}Dd
{C§1|0a “%’ %}D4
{ilo, o, 1}D,
{1Cyl3, 0, 3}D,
{1C3,00, 3+ 3Dy

(14)

where the coordinate origin has been shifted to the (3, 3, 0) site.

For this RPCC transformation group, the only site transition that takes the crystal
into the trigonal phase with point group Dy, (3m) is the transition D, — C} =
1, C,, (where C,, is rotation through 180° about the [110] axis), induced by the
I, (B,) representation of D,. The displacement that occurs at the t-sublattice
reference site (the (3, %, O) site in the original coordinate system) must thercfore

be in the [110] direction, and can be denoted by the vector ug” = (=A, A, 0). The
displacements at the other sites can be obtained as the results of the action of the
coset operators {R,|V;) in (14) on u{”: i = {Ry |V, Jul, with k=1, ..., 5
in the order starting from {Cy,|—1, 0, 1}. With the superscripts on the symbois
dropped, these displacements are u;, = (0, =A, A), v, = (A, 0, —~A), uy =
(A, —A, 0), u, =(0, A, —A), uy ={-A, 0, A), in complete agreement with
the experimentally observed O-atom displacement pattern (Cochran and Zia 1968).

The disposition of the magnetic moments in the Mn,GaN unit cell is identical
with that of the vectors u,, u; and u,, or, for that matter, with that of u;, u, and
uy (Bertaut et al 1968, Agyei 1981).

Thus the magnetic moment structure in Mn,GaN is the same as the displacement
vector structure in LaAlQ,, except for the change in sense of the triangular dispo-
sitions of the displacement vectors as we move from one (111) plane to the next.
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Let us further note that, while the cubic-to-trigonal DSPT in the perovskites must
necessarily be cell-doubling transitions for the reasons given above, the correspond-
ing magnetic transitions need not always be cell-preserving. In other words, from the
group-theoretical standpoint, a cubic perovskite can undergo a magnetic transition
that gives rise to a magnetic structure identical with the displacement vector structure
exhibited by LaAlO;. The point group of the daughter crystal will then be 3'm/.

6. Conclusions

In the present paper we have defined and carried out a microscopic group-theoretical
analysis of the primary crystal properties associated with MEDS transitions. We have
shown that:

(i) DsPT involve the ordering of atomic displacement vectors of microscopic strains,
and are therefore similar to magnetic and electric transitions;

(i) the macroscopic tensors characterizing MEDS-related bulk properties of crystals
are sums of atomic property tensors; and

(iii} these atomic property tensors allow the appearance in a crystal of sponta-
neous piezomagnetism and/or piezoelectricity at its DSPT point Ty, and/or spontaneous
magnetoelectricity at its ferroelectric transition point Ty, so that the crystal can be in
a weak (or secondary) magnetic state in the temperature region Ty, < T € Ty or T,
and/or weak (or secondary) electric state in the temperature region Tp < T < Tp.

As examples of crystals that may exhibit secondary magnetic and/or electric or-
dering, we cite, among others, the crystal Ti,O, and the transforming A-15 crystals.
The case of the transforming A-15 crystals is discussed in some detail; it is shown
that these crystals may exhibit not only the scmi-spontaneous ME effect, but also
spontaneous piezomagnetism and piezoclectricity, and that their transition into the
superconducting state and their high critical fields A_ may be connected with these
effects.

Finally, the similarity of MEDS transitions is illustrated with the DSPT and magnetic
transition observed respectively in the isomorphous perovskites LaAlO, and Mn,GaN,

To the extent that the results obtained in the present paper encompass the results
obtained by Agyei and Birman (1990), we can say that they have some experimental
support. (Note also the illustration of the similarity of MEDS transitions.) However,
they require more experimental corroboration. Of greatest interest is the verifica-
tion of the predictions concerning the transforming A-15 crystals. Their experimental
confirmation will undoubtedly lead to a better understanding of the mechanism un-
derlying the transition into the superconducting state of these crystals.

In conclusion, let us note that these results could not have been obtained on the
basis of the Neumann principle alone. Indeed, the analysis brings to the fore the
limited scope of the principle.
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